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Abstract

Federated learning emerges as an effective technique to
train neural network models collaboratively among individ-
ual edge devices without centralizing the raw data. How-
ever, the data heterogeneity in such a distributed system of-
ten breaks the classical IID assumption on data statistics and
greatly harms the accuracy and convergence speed. In this pa-
per, we propose to intelligently select clients through exploit-
ing the data correlations among clients to improve learning
performance. We propose a novel Neural Contextual Com-
binatorial Bandit approach, NCCB, that gracefully handles
the non-trivial relationship between the extracted features and
rewards, and satisfies the combinatorial constraints imposed
by the federated learning. We theoretically prove that NCCB
has a bounded regret. Extensive experiments on real-world
datasets further demonstrate that our approach can achieve
up to 50% higher speed to reach target accuracy than the Fe-
dAvg baseline, and 17% higher accuracy than state-of-the-art
solutions.

Introduction

With the increasing awareness of privacy protection, laws
and regulations, such as the GDPR in European Union
(European Commission 2018) and the CCPA in Califor-
nia (Bukaty 2019), are established worldwide to restrict the
access of raw edge data. This greatly challenges the tra-
ditional gather-and-analyze paradigm, where a centralized
server collects data from all clients into one place to conduct
model training or data analysis. Federated learning is pro-
posed to conduct neural network training via collaboration
among clients and servers without uploading the raw data.
Since its introduction, it has been widely studied and applied
in various machine learning scenarios, including computer
vision (Liu et al. 2020b), natural language processing (Yang
et al. 2018), medical care (Huang et al. 2019) and etc.
While the existing machine learning theories heavily rely
on the assumption of identical independent distribution (IID)
of raw data, clients’ local data in the federated setting nat-
urally is non-IID. This is also known as data heterogeneity,
one of the unique challenges emerged from federated learn-
ing, along with device heterogeneity, network heterogene-
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ity, etc. The existence of data heterogeneity has severe con-
sequences on various aspects of federated learning, includ-
ing sub-optimal prediction performance, longer convergence
time, and unfairness among clients (Kairouz et al. 2019).

Previous studies either ignore this non-IID challenge or
assume some known local data statistics. For example, many
local weight update algorithms are proposed still following
the IID setting (Liu et al. 2020a; Uddin et al. 2020). Wang
et al. propose a control algorithm to fully utilize all limited
network resources under the assumption that datasets follow
four specific distributions (Wang et al. 2019). Yu et al. pro-
pose to speed up convergence by assuming that the datasets
follow identical distributions but may be correlated with
each other (Yu, Yang, and Zhu 2019). More recent works
start to leverage the posterior information, like local model
weights (Wang et al. 2020; Chen et al. 2020), revealed dur-
ing the training process to help future learning.

However, these attempts in handling the data heterogene-
ity challenge either fail to model the real world distributions
accurately or incur large overhead in extracting posterior in-
formation. In this paper, we argue that datasets at different
devices, though no longer follow the IID property, actually
may correlate with each other, which can then be leveraged
to help the federated learning process. For example, the cor-
pus difference of two sport journalist can be smaller than that
of one sport journalist and one literature professor, which
may help the natural language processing training. The im-
ages captured by two cameras in similar scenarios are more
likely to be similar than the images captured by the cameras
that are deployed for different purposes, which may help the
computer vision model training. In fact, such kind of cor-
relations among different entities have been confirmed or
validated in various disciplines. One representative example
is the language usage correlation between different clients
studied in sociology, where clients living in the same social
circle also tend to use similar words or phrases, which is for-
mally known as “language homophily” (Aiello et al. 2012).
Homophily is generally believed to form due to the process
of selection and social influence, and can be vividly captured
by an English proverb, “Birds of a feather flock together”,
which motivates our title (McPherson, Smith-Lovin, and
Cook 2001). Intuitively, if we could capture this type of
correlation among individual devices in federated learning,
and consider such correlation when selecting clients, a good



global model can be trained by more representative clients
with fewer communication rounds.

However, multiple challenges directly emerge if we want
to identify and leverage this type of correlation in federated
model training. First, compared with traditional distributed
machine learning, federated learning enforces tighter re-
quirements on privacy, prohibiting the sharing of raw data.
How to capture the correlation among local dataset with-
out revealing private information remains a problem. Sec-
ond, even if we have successfully extracted the correlations
in a privacy-preserving way, the relationship between dif-
ferent correlations and final performance is still unclear.
Consequently, how to leverage this relationship to help the
client selection process also needs to be designed. Last but
not least, rather than selecting one client, we need to select
multiple clients per round in federated learning. Selecting
m clients per training round from n total clients can have
O(n™) choices in total. How to identify the best combina-
tions in this exponential space is non-trivial.

In this paper, we present a novel Neural Contextual Com-
binatorial Bandit (NCCB) approach to embed the prior in-
formation of clients and select the right set of clients for
federated learning. NCCB gracefully handles the privacy-
aware context embedding, relationship learning, and com-
binatorial selection challenges. Specially, our context-aware
client selection mechanism consists of two parts, the con-
text feature extraction part and the client selection part. In
the first part, a local feature extractor is designed to embed
the raw data vectors into a short-length feature vector via a
light weight locality sensitive hashing hashing function. In
the client selection part, the clients are first grouped into dif-
ferent clusters to reduce the profiling space. We then design
a neural network to estimate the non-trivial relationship be-
tween feature and reward. A bandit selector acts simultane-
ously to identify the right set of clients to maximize system
utility in each round. In summary, our contributions are as
follows:

* We propose a context-aware client selection mechanism
that exploits the correlation among clients to improve
federated learning.

* A novel neural combinatorial contextual bandit approach
is proposed to embed the correlation information as con-
texts and select a combination of clients for federated
learning.

* Different from the classical bandit approaches, our bandit
approach not only can learn the non-trivial relationship
between features and rewards, but also can non-trivially
handle the combinatorial requirement requested specifi-
cally in federated learning.

* We prove theoretically that our bandit achieves
O(T) regret, where T is the number of rounds.

o (T log(1+ 52)(1 - T—’\w))J) bounded regret. Ex-

tensive experiments on real-world datasets further vali-
date the superior performances of our approach in accu-
racy and speed to reach target accuracy.

System Model and Problem Formulation

In this section, we first model the overall federated learn-
ing system and users’ utility. Then we formulate our client
selection problem as a combinatorial bandit problem.

System Model

In a typical federated learning systems, suppose there are n
clients in total. For each client ¢ € [1,2,---,n], the cor-
responding dataset is D;. A federated learning server se-
lects m clients per round ¢ for model training with a to-
tal of 1" rounds. We denote these selected clients as B; at
round ¢. The server first sends the global weights to initial-
ize the models in local devices?. After receiving the weights,
each client trains the model based on its own dataset and ob-
tains different weights matrix wq, wa, - - - , w,. These local
weights are then aggregated at the server side to update a
new global model wgiopq1, Which are distributed to clients
further to start a new iteration. The whole procedure is illus-
trated in Fig. 1(a). Let w” denote the final model weight and
S l(w?, D;) measures the final loss of the model where
[ is the loss function. The whole federated learning process
tries to minimize

> i(w”, Dy) (1)
i=1

We next model the user’s utility in the federated settings
considering two major factors. Training neural networks
with a larger scale of dataset results in a finer model that fits
more variations of data. Dataset size of a client thus greatly
affects its contribution to the model. In addition, a client
with a larger training loss implies that the current global
model performs worse locally and thus needs more train-
ing to improve the performance with regards to this local
dataset. Therefore, from the federated learning’s perspec-
tive, the utility U of a client ¢ with dataset D; can be defined
as

=|D; |% o > Loss(d)? 2)

deD;

where Loss(d) is the loss function determined by local
model. This utility form is also used in (Lai et al. 2021).

With more clients included in training, the global model
performs better because of larger size of dataset. However,
since the global model is the aggregation of total m local
models, as m increases, the contribution of adding one more
client to the global model becomes weaker. Consequently,
we define the utility of a combination of selected clients to
be

UB) = Y U=, [wnZLoss(d)Z]
i€ By 1€EDBy deD;
3)

which is squared root of sum of squared utility functions of
all training clients.

2Clients and devices are used interchangeably in this paper.
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Figure 1: System overview

Problem Formulation

We study the client selection problem in federated learning
so that the best representative clients can be selected to im-
prove the federated learning process. Namely, a fixed num-
ber of clients has to be selected to join the federated learning
in each round in order to maximize overall utility in Eq. 3.

In the federated learning process, since the utility of each
user depends on its training loss, which further depends on
the local data, user utilities remain unknown to the server.
Exploration is required to train the model on a client and get
the corresponding utility. As we explore more clients in the
system, their utilities become gradually clear. An efficient
system should also exploit previous experience in selecting
multiple clients with large utilities. Therefore, the tradeoff of
exploration and exploitation in the client selection process
makes bandit an appropriate formulation form.

We thus formulate our practical online client selection
problem as a combinatorial bandit problem, in which the
server and clients can be regarded as the player and arms.
Note that unlike the classical bandit problem where only one
arm needs to be selected, the combinatorial bandit here aims
at capturing the client size requirement in federated learn-
ing, where a set of clients, also known as arm set(super arm)
in bandit, has to be selected. We use a decision variable
By = (ab,2b,-- ,2t),vt € [1,2,---,T] to denote the
selection results in round ¢. If a client ¢ is selected, its cor-
responding indication variable 2! = 1. Otherwise, z} = 0.
Denote the combination of optimal arms at round ¢ is B;'. In
the process of exploration and exploitation, the aim of com-
binatorial bandit is to select a set of arms in each round to
minimize the cumulative regret. In summary, our client se-
lection problem is formulated as

min E Z(U(BZ) - U(By))

T
t=1

. doal<mvte(1,2,-,T]
S.T.
=1

2t e[0,1,Vie[1,2, - ,nl,t € 1,2, ,T]
@)

The first constraint limits the number of selected clients
for each round. The second indicates the binary selection.

Design and Analysis

In this section, we first provide an overview for our context-
aware client selection mechanism. We then introduce the de-
tails of our mechanism and conduct regret analysis and com-
plexity analysis after that.

Overview

Our context-aware client selection consists of three parts,
a local feature extractor, a reward estimator, and a client
selector as illustrated in Fig. 1(b). At the client side, a lo-
cal feature extractor maps the raw data vector to a feature
vector without revealing private information. At the server
side, a reward estimator learns the relationship between fea-
ture vectors and actual rewards and estimates the next-round
rewards. Based on the estimator and other parameters, the
client selector returns a list of client to minimize the regret
based on a Neural Combinatorial Contextual Bandit.

Privacy-Preserving Context Extractor

The key requirement in the context extractor is to preserve
data utility without uploading the raw data. Existing solu-
tions use the weights generated after training on local dataset
as a feature for each device. However, this posterior infor-
mation requires extra model training and incurs extra large
computation cost (Wang et al. 2020; Chen et al. 2020). Lo-
cal sensitive hashing (LSH) hashes similar items into one
bucket (Gionis 1999) and is widely-used to generate finger-
prints for documents(Zhao et al. 2020) and images (Zhou
et al. 2021). For a vector v = (v1,va, - ,vg) with size
k, n indices {i1,i2, - iy} from {1,2,---  k} are chosen
randomly. Hence, a new vector v’ = (vi,, Uiy, ,0;,) =
(vy,vh, -+ ,vl) of n directions is formed. n different scalar
hash functions h; : R" — Z defined by Eq. 5 are used to
project v’.

!/
') = |1
n
where b; is uniformly generated in [0,7) and 7 is
the quantization step. The generated vector h(v) =
(h1(v"), ha(v"), -+, hy(v")) extracts the contents of vector
v and can be indexed with an integer g(h(v)) : Z* — Z. For

two near vectors v, u their corresponding hashes g(v), g(u)
are similar.

] &)



Therefore, LSH is a desirable lightweight candidate in
distilling the prior information of local data without re-
vealing raw data to server. Among all the LSH algorithms,
SimHash(Manku, Jain, and Sarma 2007) is widely used to
process large-scale documents(Jafari et al. 2021), and has
been used in some federated scenario, like cookie manage-
ment (Google 2018). Therefore, we also take advantage of
SimHash algorithm to extract content features of datasets in
the context of NLP federated Learning. In SimHash, we first
break the text into n features. Next we use hash functions
to convert the features into k-bit binary numbers where &
is the hash size. The example features can be hashed into
hi,1 < 7 < n. Then, we assign different positive weights
w; > 0,1 < ¢ < n to features according to the contents.
For each feature i, if the jth bit of its corresponding hash
value h; is 0, we turn w; into —w; as the weighted result.
Otherwise we keep w; as the weighted number. As a result,
each k-bit hash binary number of feature ¢ is weighted into
k integers denoted as hjy, hly, hls, - - -, hl, where

' wi,  hij==1
hij - {wi7

hij ==0
Then we aggregate all the weighted result >, h;; for
all bits j € [1,k]. Denote the aggregated numbers
as (v1,va, -+ ,vg). Finally we can obtain the finger-
print for the text (sign(vy), sign(va), - - - , sign(vy)) where
sign(z) : Z — [0, 1] is defined by

(6)

1 0
sign(x) = {0 e ™

hash weight
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$

Figure 2: A toy example for SimHash

To facilitate understanding, Fig. 2 demonstrates the
SimHash process of a phrase the cat sat on the mat”3. This
phrase is first broken into ’the’, ’cat’, ’sat’, ’on’, ’the’ and
’mat’. After computing the corresponding weight values and
hash values from weight and hash function, we negate some
of the weight values since the corresponding hash bits are
zero rather one. For example, for phrase “the”, the signs of

3In practice, we will preprocess text and remove trivial words.

second and third weight values are negated and become (1,
-1, -1, 1) since the hash value of this word is 1001. After ag-
gregating the corresponding value in each phrase and pass-
ing through a sign function, we get the final feature vector.

The Neural Combinatorial Contextual Bandit

Based on the represented features, we propose a neural com-
binatorial contextual bandit (NCCB) approach to embed the
feature as context and select clients intelligently. The de-
tailed algorithm design is shown in Alg. 1. The NCCB ap-
proach is made up of 3 steps.

Algorithm 1: NCCB

Input: Number of rounds: 7'; number of total arms: n; num-
ber of clusters: c; number of selected arms per round: m;
a control constant k

1: Observe contextual vectors x;,% € {1,2,--- ,n}
2: Cluster all the arms into c clusters Cy, Co, -+, C,
3: Initialize all the counters C't(C;) to 0
4: Randomly initialize 6¢
5: fort+ 1,...,T do
6: Initialize the selected arm set B; = ¢
8: Cser = Randomly select min{m, |C,,,,|} clusters
from C.,,
9: for cluster C' € Cy,; do
10: Randomly select an arm b; from C'
11: B, = B; Ub;

12: end for
13: if |Cyn| < m then

14: fori< 1,---,ndo

15: Compute upper confidence bound U;
using f(iL’i’t; at_]_)

16: end for

17: fori < 1,---,m —|Cyp| do

18: bi = argmax;cry .. nyap,¢8, Ui

19: Bt = Bt U bl

20: end for

21: end if

22: Play b; and observe ry,  for all b; € B,

23: 0; + train Neural Network using
{wbj }bjeBi,ie{l,»-- it} {Tb,i,i}bjeBi,ie{l,»-- 2t}
and 0t_1

24:  Update counter C't(C;) forall b; € By and b; € C;
25: end for

Preparation Before any trial, the feature vector for user ¢
is denoted as x;, ¢ € {1,2,--- ,n}. We cluster all the users
into ¢ clusters denoted as C7,Cy, - - - , C. using the feature
vectors. A counter is set for each cluster to indicate the num-
ber of times users in this cluster are selected. An exploring
threshold k£ € N controls the number of selection for each
cluster. This prevents the abuse of some specific arms and
increases explorations especially at early stage of training
as we will see in the following. The system initializes the
counter of each client to zero.

Client selector A set C,,,, = {C;} includes all the unex-
plored clusters whose counters are less than or equal to & is



formed. One arm will be selected per chosen cluster. If the
number of clusters of these kinds exceeds the required num-
ber of arms m, they will be selected uniformly at random.
It may happen that the number of clusters in C,, is smaller
than m. Then, the system computes the upper confidence
bound U; for each arm and determines the top m — |Cyy,|
arms with the largest m — |Cly,,| upper confidence bounds
from a neural reward estimator. The rewards of all the clients
are then predicted and the remaining m — |Cl,,,| arms are se-
lected as shown as following:

b1Cunl+15 010 42, 5 Om
= (AgSOrtc (1 . kynig (v, by, U 7]

where 7 € 1,2...,n, argsort is a function that takes the se-
lected U; array, sort them from smallest to biggest based
on the upper confidence bound values and return n indexes,
Il =n—(m—|Cunl|) +1and r = n. The arms selected
from unexplored clusters C,,,, should be excluded since re-
peated selections of one arm are prohibited. This procedure
is displayed from line 18-21 in Alg. 1. After selection, the
system increases the counter of each cluster according to the
selected clients.

Neural reward estimator In the mean time, we also need
areward estimator f that takes an arm and its context and es-
timate the corresponding reward. Unlike the classical linear
contextual bandit where the estimation function is assumed
to be linear, in our approach, a neural network is used to han-
dle the complex relationship between features and rewards
in our problem, which could be parameterized as

f(z;0) = VmWpo(Wp_10(---c(Wiz)))  (9)

where L is the number of layer, W;,l € [1,---, L] are
matrices whose elements are coefficients, o is an activation

®)

function and 8 = [vec(W7), vec(Ws), - - - , vec(W7p)].
The loss function is defined as
t o2
(f(zy;0) —mo(1))? [0 -0°,
L(0) =
@=> > 5 WA
t=1 b B,
(10)

where w is the network width, X is the regularization pa-
rameter and 89 is the initial parameter of the neural network
model. For [ € [1,--- ,L —1],

wo (W %) o

w

where elements in W of size 5

N(0,2). We also initialize
W) = (w”, —w’) (12)

where entries in w of size % are drawn from N (0, 2).
Following the neural contextual bandit in (Zhou, Li, and
Gu 2020), the upper bound is calculated as

X 4 are drawn from

.O\T 71 .
U= (2:60) 1 \/Vf(ra 0) z Vi@6) 5
where Z is iteratively updated by
.\T .

w

after each training and -y is the scaling factor.

After selecting m arms, the corresponding actual re-
wards are observed sequentially. The neural network will be
trained whenever a new reward is observed, with its param-
eter 6 updated. The reward of each arm 74, + is calculated
from the training loss using Eq 2.

Complexity Analysis

For each training epoch, executing line 6-12 in Alg. 1 takes
O(c + m). The worst case of each training epoch is that
the number of unexplored clusters |C,,,,| is smaller than the
required number of selected arms m. In this case, the sys-
tem computes f(x;,¢;60¢—1) for n times. Each time com-
puting takes O(w3L). Thus, executing line 13-20 in Alg. 1
takes O(w3L + mlogn). The training of deep neural net-
work takes O(w3LET?) where E is the epoch number set
for training neural network in line 23 in Alg. 1. The factor
T2 is related to the number of dataset. Hence, the time com-
plexity is O(w*mT3LE + w3nLT).

Regret Analysis

In this subsection, we analyze the regret for NCCB. NCCB
is combined of two parts, exploration and exploitation. Thus
we can divide regret regret R(T) into two terms:

E[R(T)] = E[R,(T)] + E[Ri(T)] (15)

where E[R,(T)] is the regret in exploration phases and
E[R;(T)] is the regret in exploitation phases. We will prove
that both two terms are upper bounded. We first discuss the
submodularity of utility function which helps to present the
analysis of regret in exploration phases.

Lemma 1 The utility function defined in Eq.3 is submodu-
lar.

All proofs can be found in the appendix. In this way, we
can prove Theorem 1 which states that E[R,-(7")] is bounded
by combining Lemma 1 and theorem 4.2 in (Nemhauser and
Wolsey 1978).

Theorem 1 There exists a real number ¢ such that the re-
gret E[R,.(T)] in the exploration phase is bounded by

E[R,(T)] < (1 — HmeTo. (16)

The next task is to analyze the regret in exploitation phases.
Since the exploitation steps are modifications to NeuralUCB
(Zhou, Li, and Gu 2020), we utilize lemma 6.3 and lemma
6.4 derived in (Zhou, Li, and Gu 2020) to validate Theorem
2 which provides the bound for E[R;(T)].

Theorem 2 Taking r = [1; t]ic(1,... 1}.b,eB; € RT™ S >
- : "
V2rTH rand d = 29X yypere H is defined in Defi-

log(1+5)
nition 5.1 in (Zhou, Li, and Gu 2020), the regret in exploita-



tion phases is bounded by

E[R;(T)] SSm\/T\/cflog(l + %) +2

~ T
U\/dlog(l—&-)\n)-i-Q—I-QlogT (17)

A T
+2VAS + B(1 - Tw)y\g

where v and (3 are constants.

+2m

Therefore, the regret of NCCB is upper bounded based on
Theorem 1 and Theorem 2.

Evaluation
Experiment Setup

Dataset description We evaluate our scheme using Supe-
ruser dataset(Internet Archive 2021) and Yelp dataset(Yelp
2004). Superuser is an online forum where users can post
and answer questions and comment others’ questions and
answers. The raw dataset includes information of posts,
users, votes as well as comments. All the posts and com-
ments data contain their corresponding user ids. Yelp is one
of the biggest review websites where users post their reviews
after visiting restaurants and other places. The dataset in-
cludes the information of users and reviews. All the reviews
are stored along with their corresponding user ids. The raw
superuser dataset consists of 194085 users’ data and the yelp
dataset consists of 2189457 users. The original dataset is
highly skewed with most of users having a limited number
of comments. Therefore, we remove the users with less than
150 comments or posts, and identify 761 valid users in Supe-
ruser dataset and 700 users in Yelp dataset to join federated
learning. For both of the two dataset, we follow the method
in (Hard et al. 2018) to remove stop words.

Federated learning setting We use the post bodies of dif-
ferent users to model the local dataset at different client de-
vices naturally. These posts are used to perform the next-
word-prediction task, a classical NLP task used in other fed-
erated literature. We reprocess the train dataset size for each
client to be the same to exclude the influence of data size.
We use the stacked LSTM model to perform word predic-
tion as described in (Sundermeyer, Schliiter, and Ney 2012)
with embedding size 200 and LSTM size 200. For Superuser
dataset, we set number of LSTM layer to 2 while for Yelp
dataset the number of layer is increased to 5, since the latter
dataset is bigger. Learning rate and learning rate per local
are set as v = 0.002 and 4 = 0.9993. Local epoch is set
to E = 5 and the number of clients participated in train-
ing each round is set to N = 5. The training is done with a
24G-memory NVIDIA RTX3090.

Comparison approaches We compare our approach with
three other approaches: random, Oort (Lai et al. 2021), k-
LinUCB (Li et al. 2010). Random selection, is the default
selection approach proposed in FedAvg, where clients are
randomly selected to join the federated learning. Oort is a
state-of-the-art stochastic bandit solution for client selection

in federated learning(Lai et al. 2021). k-LinUCB 1is another
representative contextual combinatorial bandit solution. It
assumes a linear relationship between reward and feature
vector, and selects k clients with top & expected rewards.
The observed rewards are then used to renew parameters
in the linear function through regression. In K-LinUCB and
Oort setting, the reward is defined the same as in Eq. 2.

Evaluation metrics We select Top-1 accuracy and speed
to reach target accuracy as evaluation metrics. The Top-1
accuracy refers to the conventional accuracy where the pre-
dicted word must be the expected answer. We also evaluate
the convergence speed for the training process, which is rep-
resented by the number of rounds to reach the target accu-
racy. The target accuracy is the maximum accuracy that the
model obtains under the random selection method.

Table 1: Summary of terminal accuracy and relative im-
provement

Dataset Method Accuracy (%) Improvement (%)
Rand 10.035 0.0
NCCB 11.784 17.429
Superuser Oort 11.372 13.323
k-LinUCB 11.122 10.832
Rand 11.176 0.0
NCCB 12.547 12.267
Yelp Oort 12.116 8.410
k-LinUCB 11.810 5.673
FedAVG(IID) 12.800 14.531

Table 2: Summary of number of rounds to target accuracy
and relative improvement

Dataset Method Rounds to Target Accuracy Improvement (%)
Rand 283 0.0
NCCB 134 52.7
Superuser Oort 181 36.0
k-LinUCB 213 24.7

Dataset Method Rounds to Target Accuracy  Improvement (%)
Rand 196 0.0
NCCB 101 48.5
Yelp Oort 109 44.4
k-LinUCB 108 44.9
FedAVG(IID) 98 50.0

Overall Performance

We summarize the performance of the terminal accuracy and
the rounds to target accuracy in Table 1 and Table 2, respec-
tively. Compared with the baseline performance, our NCCB
approach improves the accuracy by 17.429% compared with
the baseline for Superuser dataset and by 12.267% for Yelp
dataset. In addition, we find that K-LinUCB does not per-
form even as good as the classical stochastic bandit ap-
proach, revealing the non-trivial relationship between the
context features and the rewards, and the consequences of
wrong assumptions.

Sensitivity Analysis
Impact of exploring threshold The exploring threshold %
is one important parameter in our method. It affects how



we measure one cluster group as unexplored or not. We set
k to be 0, 20, 100, 200 for the Superuser dataset, and 10,
15, 20, 200 for the Yelp dataset. Though NCCB achieves
higher performances in all k settings than the widely ap-
plied random approach, different k leads to different perfor-
mances for NCCB. For example, for the Yelp dataset, when
we change k from 10 to 5, 20 and 200, the final accuracy
decrease by 2.12%, 2.27% and 10.83% respectively. Essen-
tially, k is a measurement of balance condition between ex-
ploration and exploitation. If k is very small (e.g. & = 0
in Fig. 3(a), £ = 5 in Fig. 3(b)), it fails to explore enough
clients so that the neural reward estimator performs badly.
On the other hand, if & is quite large (e.g. £ = 200 in Fig. 3),
the system neural reward estimator is idle during the whole
process and fails to exploit previous experience.
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Figure 3: Impact of different exploring thresholds

Impact of scale of total participants We explore the
impact of total participated clients in training and further
compare them with the random approach in the original set-
ting (761/700 training clients). As we can see, with the in-
crease of number of participants, the training performance
increases, indicating that NCCB method can capture clients
with larger utility and improve the training performance.
Further more, compared to the baseline with larger scale, our
method can identify desirable clients from a smaller pool of
clients and achieve even better performances.
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Figure 4: Impact of different system scales

Impact of feature size The feature size of the SimHash
vector determines the expressiveness on clients’ data. We
evaluate the performance of NCCB under different feature
sizes generated by SimHash. Figure 5 shows that the de-
crease of feature size degrades the performance of federated
learning. For the superuser dataset, decreasing size of the
feature vectors from 64 to 32, 16, 8 would decrease the fi-
nal accuracy by 3.42 %, 5.49% and 12.16% respectively. For

the yelp dataset, when we decrease the size of feature vec-
tors in a similar manner. The longer the bit length used to
encode the local data, the more specific this feature captures
the characteristics of this client, which helps the client selec-
tion process.
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Figure 5: Impact of different feature sizes

Related Works

Client selection in federated learning Client selection is an
important controlling knob in federated learning to handle
various types of heterogeneity. From the solutions’ perspec-
tive, existing client selection studies generally fall into three
categories: bandit-based (Xia et al. 2020; Lai et al. 2021),
reinforcement learning based(Wang et al. 2020), heuristic
based(Chen et al. 2020; Ouyang et al. 2021). Among bandit-
based approaches, Oort in (Lai et al. 2021) formulates the
client selection problem as a traditional multi-armed bandit
problem without relying on contextual information. Conse-
quently, it relies on training of all clients to get the qual-
ity estimation of local dataset, leading to prolonged con-
vergence time. CS-UCB proposed in (Xia et al. 2020) re-
lies on corresponding training time as the contextual fea-
ture to conduct UCB, which also requires redundant train-
ing rounds. In addition to bandit-based approaches, FAVOR
in (Wang et al. 2020) applies a reinforcement learning ap-
proach to select device. However, deep reinforcement learn-
ing takes much longer time to train without any theoreti-
cal performance guarantees. Researchers also heuristically
cluster clients based on the model weights after first-round
training of each client and randomly select clients without
exploiting previous experience (Chen et al. 2020; Ouyang
et al. 2021).

Bandit algorithms Our work also contributes to the ban-
dit field by jointly considering the non-trivial contextual re-
lationship and the combinatorial requirement. Classical con-
textual bandit algorithms such as Linear Upper-Confidence-
Bound (UCB) algorithm (Abe, Biermann, and Long 2003)
assumes a trivial relationship between the explored rewards
and feature vectors, which is hard to meet in real life (Zhou
2015). Neural contextual bandit is introduced to overcome
this shortage by relying on a neural network to learn the un-
derlying context-to-reward relationship (Zhou, Li, and Gu
2020). However, it fails to satisfy the combinatorial require-
ment specific in our problem and thus cannot be applied di-
rectly. Contextual combinatorial MAB (Chen, Xu, and Lu
2018) combines both contextual and combinatorial bandit.
Nevertheless, it provides no method to estimate reward from



feature vectors. In this paper, we propose to learn the non-
trivial relationship between rewards and contexts via a neu-
ral network and satisfies the combinatorial requirements re-
quired in federated learning. The performance of NCCB is
proved both theoretically and empirically.

Conclusion

Federated learning emerges as a promising technique for
neural network training without sharing the raw data. Se-
vere data heterogeneity in decentralized clients greatly
harms the performance of federated learning. In this paper,
we proposed a context-aware client selection approach for
communication-efficient federated learning by leveraging
the correlation between clients. To be specific, we propose
a novel neural contextual combinatorial bandit approach to
intelligently select clients to minimize the selection regret.
Our approach successfully embeds the context into the se-
lection process, handles the non-trivial relationship between
the feature and reward, and works well in the intrinsic com-
binatorial searching space. Extensive experiments on two
real-world datasets demonstrate its effectiveness.

Proof of Lemma 1

Proof 1 Suppose there is a set of arms B. We have

UBU{a})= | Y Ul (18)
i€BU{a}

where a is an arm such that a ¢ B. Since
U(B)* < U(B U{a})?

Y. U< U@ +Ua) (9

i€ BU{a} i€B
<(U(B) +U(a))?,
we can obtain
U(B) <U(BU{a}) <U(B)+U(a). (20)

Hence, this is a submodular function.

Proof of Theorem 1

Proof 2 From Alg. 1, at each exploration phase, at most m
arms are selected. Based on theorem 4.2 in (Nemhauser and
Wolsey 1978), the regret of selecting a random combination
of arms at round t is bounded as shown in

BIR(0)] < (1 - )mes e

where ¢ is maximum reward of arms due to submodularity
of the reward function for combination of arms. The explo-
ration phases at most last for T rounds and then we get

E[R,(T)] < (1~ 1)meTs. 22)

Proof of Theorem 2

Proof 3 We consider the case when k = 0. The bandit will
undergo exploitation phases for T rounds and each round
select m arms.

Let r(x*,t) be the reward of the optimal arm and r(x,t)
be the estimated reward of selected arm. Lemma 6.3 in
(Zhou, Li, and Gu 2020) still holds in NCCB since we se-
lect the maximum m upper confidence bound values eval-
uated with 0y which is larger than or equal to the values
of arms in optimal combinations. In this way, there exists
positive constants « and ( such that for any 6 € (0,1)
if dimz > Bmax{T" A" "w? (log(dimx)3), A\~ 2w~ 2
(log(T"“’ )2}, with probability at least 1 — § based on
the mltzallzation of Bo, the difference between ideal and es-
timated reward is

TSy
Vdim

+ (S dim( z b \/logdlmxTﬁ)\_%
+ (dim ) fli\/logdlmIBT3)\ 3w

(23)

r(x*,t) — r(x,t) <2v;—1 min{||

Hence,

< Z mlr(x*,t) — r(z,t)]

<2mZ% 1 mln{||\>:il)”a }

+ am(S(dim ac)fé ViogdimzT & A~ 5w
)

(MR

+ (dim @)% \/log dim @75 A~ 5 w?
24

Using Cauchy-Scharwz inequality we can obtain

Vf(ﬂl Ht 1)

Ri(T) <2m T min{ || ———=—

+am(S(dimm)_%\/logdimmde)\ Sw
(dima)~ y/logdimzT5 A\~ sw)

(25)

The first inequality holds due to submodularity of combina-
tion reward function and the second ineqaulity holds due to
Eq. 24. Using Lemma 6.4 in (Zhou, Li, and Gu 2020), the
inequality becomes

I, 1}

7
2

Ri(T) §3m\/T\/dlog(1 + %) +2

- T
U\/dlog(1+;)+2—2log6 (26)
A T
2 1— =N/~
F2VAS + 51— £y 5| +m

Taking a high probability with § = %, we obtain the bound



upon expected regret

E[R:(T)) S3mﬁ\/dlog(1 + %) +2

- T
U\/dlog(1+;)+2+210gT 27

A T
+2VAS + B(1 — ﬁ)y’ -

h\ + 2m.
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